Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in marine biology 2010

Physiology and metabolism of Northern krill (Meganyctiphanes norvegica Sars).

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
De link wordt op het klembord opgeslagen
John I Spicer
Reinhard Saborowski

Sleutelwoorden

Abstract

Advances in our understanding of the physiology and metabolism of Northern krill, Meganyctiphanes norvegica have been sporadic but significant. Despite problems with keeping M. norvegica in good condition in the laboratory, those who have tried, and succeeded, have contributed to a better knowledge of krill biology and challenged our understanding of some basic biological processes. Most recent work has been concentrated in the fields of digestive physiology, lipid biochemistry, respiration and anaerobiosis, metabolic properties, and pollutants. M. norvegica is capable of digesting an opportunistic, omnivorous diet, showing some digestive enzyme polymorphism and high levels of enzyme activity, the latter varying with season. It also seems capable of digesting cellulose and hemicelluloses, for example, laminarin. The biochemical composition of krill is relatively well known with some recent extensive work focusing on the previously little studied lipid and fatty acid composition, particularly with reference to reproduction, overwintering energy storage and as a nutrition marker. A high aerobic metabolism (but poor anaerobic capacity) is characteristic of M. norvegica, and how this is affected by temperature, low O(2), and season has attracted some attention, particularly in the context of diel vertical migration (DVM) across pronounced pycnoclines. Despite determining high metabolic turnover rates and a high physiological plasticity for this species, we know little of the regulative potential of metabolites, particularly their modulative effect on enzyme activity. Certainly a modest ability to maintain aerobic metabolism when encountering hypoxia, and little or no ability to osmoregulate in hyposaline conditions, does not prevent DVM in adults of this species. The ability to maintain aerobic metabolism develops early in ontogeny at about furcilia III (i.e. concurrent with first DVM behaviour). The respiratory pigment of M. norvegica, haemocyanin, has a low O(2) affinity and high temperature sensitivity (although temperature has the opposite effect on O(2) binding than found for nearly every other haemocyanin). Also surprising is the apparent use of haemocyanin as an energy source/store. While recent work has focused on physiological effects, the ecophysiological effects of transuric elements and trace metals, the effects of pollution generally are widely understudied.

Word lid van onze
facebookpagina

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge