Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2019-Jun

Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: Insight into regulatory mechanisms using proteomics.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
De link wordt op het klembord opgeslagen
Ning Zhao
Yanyan Yan
Yongli Luo
Nan Zou
Weitang Liu
Jinxin Wang

Sleutelwoorden

Abstract

Non-target-site based resistance (NTSR), a poorly understood multigenic trait, has evolved as the greatest threat to crop production worldwide, by endowing weed plants an unpredictable pattern of resistance to herbicides. Our recent work with multiple-herbicide-resistant shortawn foxtail (Alopecurus aequalis Sobol.) biotype has preliminary indicated that cytochrome P450s-involved enhanced rate of mesosulfuron-methyl metabolism may involve in the NTSR. Here by further determining the differences in glutathione S-transferase (GST) activity and uptake and metabolic rates of mesosulfuron between resistant (R) and susceptible (S) A. aequalis plants, and associating them with endogenous differently regulated proteins (DEPs) identified from combinational proteomics analyses, we provided direct evidences on the enhanced herbicide degradation in resistant plants. Subsequently, the physiological phenotypes of photosynthesis, chlorophyll fluorescence, and antioxidation were compared between R and S plants and linked with correlative DEPs, indicating a series of key pathways including solar energy capture, photosynthetic electron transport, redox homeostasis, carbon fixation, photorespiration, and reactive oxygen species scavenging in susceptible plants were broken or severely damaged by mesosulfuron stress. In comparison, resistant plants have evolved enhanced herbicide degradation to minimize the accumulation of mesosulfuron and protect the photosynthesis and ascorbate-glutathione cycle against the adverse effects of chemical injury, giving A. aequalis plants a NTSR phenotype. Additionally, three key proteins respectively annotated as esterase, GST, and glucosyltransferase were identified and enabled as potential transcriptional markers for quick diagnosing the metabolic mesosulfuron resistance in A. aequalis species.

Word lid van onze
facebookpagina

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge