Dutch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

aluminum/mais

De link wordt op het klembord opgeslagen
LidwoordKlinische proevenOctrooien
Bladzijde 1 van 48 resultaten
The electron microprobe X-ray analyzer (microprobe) has been used to determine the mode of entry of aluminum (Al) and its distribution and localization in the corn plant. Microprobe analysis is a non-destructive method allowing for multiple element analysis in the same tissues, cells or cell

Determination of stress responses induced by aluminum in maize (Zea mays).

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To
Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the

Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
The alleviating effect of silicon (Si) supply on aluminum (Al) toxicity was suggested to be based on ex or in planta mechanisms. In our experiments with the Al-sensitive maize (Zea mays) cultivar Lixis, Si treatment but not Si pretreatment ameliorated Al-induced root injury as revealed by less
The effects of aluminum ions on the generation of mobile inorganic phosphate (Pi) within the cells of excised maize (Zea mays L.) root tips were examined using (31)P-nuclear magnetic resonance ((31)P-NMR) spectroscopy. When perfused with a solution containing 50 mM glucose and 0.1-5.0 mM Ca(2+) at

Phosphine intoxication following oral exposure of horses to aluminum phosphide-treated feed.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
METHODS 66 horses were potentially exposed to phosphine (a gas) 14 hours after being fed a pelleted ration treated with aluminum phosphide. RESULTS 28 horses had clinical signs of profuse sweating, tachycardia, tachypnea, pyrexia, ataxia, seizures, and widespread muscle tremors. Clinically relevant

Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
Plant roots exude viscous polysaccharides, called mucilage. One of the suggested roles of mucilage is immobilization of toxic metal cations, including aluminum (Al), in the rhizosphere. Mucilage exuded from roots of Melastoma malabathricum (Al accumulator) was characterized in comparison with that

Association and linkage analysis of aluminum tolerance genes in maize.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
BACKGROUND Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and
In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on

A Maize ZmAT6 Gene Confers Aluminum Tolerance via Reactive Oxygen Species Scavenging

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
Aluminum (Al) toxicity is the primary limiting factor that affects crop yields in acid soil. However, the genes that contribute to the Al tolerance process in maize are still poorly understood. Previous studies have predicted that ZmAT6 is a novel protein which could be upregulated under Al stress
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a
We investigated the uptake of aluminum (Al) and transport to shoots in two inbred maize lines (Zea mays L., VA-22 and A(4/67)) differing in Al tolerance. Seedlings were grown for 7 days in hydroponic culture with nutrient solution that contained 0, 240, 360, and 480microM Al at pH 4.2. After 7 days
Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic

Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
Aluminum (Al) toxicity is a major constraint for crop production in acid soils. Therefore, looking for sustainable solutions to increase plant tolerance to Al toxicity is needed. Although several studies addressed the potential utilization of silica or silicon dioxide nanoparticles (SNPs) to

Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator.

Alleen geregistreerde gebruikers kunnen artikelen vertalen
Log in Schrijf in
Root mucilage is gelatinous polysaccharide-containing material exuded from the outer layers of the root cap. Although mucilage has been suggested to play several roles in plant growth, its role in mineral uptake has not been well understood. Melastoma malabathricum L. is an aluminum (Al) accumulator
Word lid van onze
facebookpagina

De meest complete database met geneeskrachtige kruiden, ondersteund door de wetenschap

  • Werkt in 55 talen
  • Kruidengeneesmiddelen gesteund door de wetenschap
  • Kruidenherkenning door beeld
  • Interactieve GPS-kaart - tag kruiden op locatie (binnenkort beschikbaar)
  • Lees wetenschappelijke publicaties met betrekking tot uw zoekopdracht
  • Zoek medicinale kruiden op hun effecten
  • Organiseer uw interesses en blijf op de hoogte van nieuwsonderzoek, klinische onderzoeken en patenten

Typ een symptoom of een ziekte en lees over kruiden die kunnen helpen, typ een kruid en zie ziekten en symptomen waartegen het wordt gebruikt.
* Alle informatie is gebaseerd op gepubliceerd wetenschappelijk onderzoek

Google Play badgeApp Store badge