Norwegian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Comparative Neurology 1996-Feb

Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat.

Bare registrerte brukere kan oversette artikler
Logg inn Registrer deg
Koblingen er lagret på utklippstavlen
H M Newman
R T Stevens
A V Apkarian

Nøkkelord

Abstrakt

With the anterograde tracers Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextranamine (BD), direct spinal connections from the upper cervical spinal cord (UC; C1 and C2) and the cervical enlargement (CE; C5-T1) were demonstrated in various striatal and limbic nuclei in both squirrel monkey and rat. Within each species and from each spinal level, the total number of terminals seen in the limbic and striatal areas was approximately 50-80% of the number seen within the thalamus. Labeled terminal structures were seen in the hypothalamic nuclei, ventral striatum, globus pallidus, amygdala, preoptic area, and septal nuclei. In both species, the number of labeled terminals in limbic and striatal regions was larger from UC than from CE, although the distributions to each nucleus varied with the specific lamina injected. In both species and from both UC and CE, approximately one-half of the projections to striatal and limbic areas terminated in the hypothalamus. The only region that demonstrated a topographical organization was the globus pallidus, where terminals from the CE were located dorsomedially to those from the UC. In the rat, UC and CE injections into the lateral dorsal horn and pericentral laminae resulted in the largest number of limbic and striatal terminations. The proportion of ipsilateral terminations was greatest when the medial laminae in the UC or the lateral dorsal horn in the CE received injections. Analysis of the morphology of these spinohypothalamic and spinotelencephalic terminals showed that, in the squirrel monkey, terminals from CE injections were larger than terminals from UC injections; no such size difference was evident in the rat. However, limbic and striatal terminals in the rat were generally larger than those in the squirrel monkey following injections into the UC or CE. The exact function of these direct spinal projections to various striatal and limbic areas in primates and in rodents remains to be determined. These findings, however, support recent imaging studies that suggest that the limbic system plays an important role in the mediation of chest pain, perhaps directly through these spinolimbic and spinostriatal pathways.

Bli med på
facebooksiden vår

Den mest komplette databasen med medisinske urter støttet av vitenskap

  • Fungerer på 55 språk
  • Urtekurer støttet av vitenskap
  • Urtegjenkjenning etter bilde
  • Interaktivt GPS-kart - merk urter på stedet (kommer snart)
  • Les vitenskapelige publikasjoner relatert til søket ditt
  • Søk medisinske urter etter deres effekter
  • Organiser dine interesser og hold deg oppdatert med nyheter, kliniske studier og patenter

Skriv inn et symptom eller en sykdom og les om urter som kan hjelpe, skriv en urt og se sykdommer og symptomer den brukes mot.
* All informasjon er basert på publisert vitenskapelig forskning

Google Play badgeApp Store badge