Norwegian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1984-May

Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation.

Bare registrerte brukere kan oversette artikler
Logg inn Registrer deg
Koblingen er lagret på utklippstavlen
W Wallace
J Secor
L E Schrader

Nøkkelord

Abstrakt

Soybean (Glycine max [L.] Merr) leaves contain a low level (0.05 micromole per gram fresh weight) of gamma-aminobutyric acid (Gaba) but the concentration of this non-protein amino acid increased to 1 to 2 micromoles per gram fresh weight within 5 minutes after transfer of plants or detached leaves from 33 degrees C to 22 degrees C or lower temperatures. A parallel decrease occurred in the concentration of glutamate. Accumulation of Gaba was also triggered by mechanical damage to the soybean leaves, but in plants subjected to a gradual reduction in temperature (2 degrees C per minute) only a small increase in Gaba occurred. A rapid increase in the concentration of alanine and decrease in glycine occurred upon transfer of the soybean plants to darkness and was not influenced by temperature. When plants were returned to normal growing conditions, all changes in amino acid concentrations were fully reversed in 1 hour.In soybean leaf discs incubated with [(14)C]glutamate, a rapid accumulation of [(14)C]Gaba was detected, and glutamate decarboxylase activity of the soybean leaf considerably exceeded (>30-fold) that of Gaba pyruvate transaminase. Part of the transaminase was localized in the mitochondria, but glutamate decarboxylase was not associated with any organelle or membrane component of the leaf cell. We consider that Gaba accumulation results from some change in intracellular compartmentation of the cell triggered by low temperature shock or mechanical damage. The accumulation of alanine due to a light-dark transition could be accounted for by transamination. [(14)C]Alanine formation was demonstrated when soybean leaf extracts were incubated with glutamate, aspartate, or serine and [(14)C]pyruvate.The changes in amino acid concentrations described for soybean leaves were demonstrated for all the vegetative tissues of the soybean plant and at variable rates in the leaves of a range of plant species. The response in detached tomato (Lycopersicon esculentum Mill.) leaves was of a similar magnitude to soybean. Thus, precautions are necessary to minimize changes in amino acid composition induced by manipulation and extraction of plant material.

Bli med på
facebooksiden vår

Den mest komplette databasen med medisinske urter støttet av vitenskap

  • Fungerer på 55 språk
  • Urtekurer støttet av vitenskap
  • Urtegjenkjenning etter bilde
  • Interaktivt GPS-kart - merk urter på stedet (kommer snart)
  • Les vitenskapelige publikasjoner relatert til søket ditt
  • Søk medisinske urter etter deres effekter
  • Organiser dine interesser og hold deg oppdatert med nyheter, kliniske studier og patenter

Skriv inn et symptom eller en sykdom og les om urter som kan hjelpe, skriv en urt og se sykdommer og symptomer den brukes mot.
* All informasjon er basert på publisert vitenskapelig forskning

Google Play badgeApp Store badge