Norwegian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
3 Biotech 2019-Jul

The concurrent effects of azurin and Mammaglobin-A genes in inhibition of breast cancer progression and immune system stimulation in cancerous BALB/c mice.

Bare registrerte brukere kan oversette artikler
Logg inn Registrer deg
Koblingen er lagret på utklippstavlen
Payam Ghasemi-Dehkordi
Abbas Doosti
Mohammad-Saeid Jami

Nøkkelord

Abstrakt

In the present study, the simultaneous application of azurin gene of P. aeruginosa and MAM-A antigen on the induction of immune responses against breast cancer tumors was investigated in BALB/c mice. The pBudCE4.1-azurin-MAM-A recombinant vector was generated and prepared at a large scale. This recombinant vector alone or combined with chitosan nanoparticles was infused into the hip muscle of animals. Animals were divided into the "prevention" and "therapy" categories. The animals of prevention category were first, immunized by a recombinant vector and then exposed to chemical cancer inducers; while the animals in the therapy category were first treated with chemical compounds and then infused by a recombinant plasmid. The tumor tissues, infusion sites, and blood specimens were collected and examined by serological, molecular, and histological tests. The breast tumor incidence in the infused animals by recombinant plasmid alone or combined with nanoparticles (in both prevention and therapy categories) compared with infused mice by empty pBudCE4.1 vector was significantly decreased (p < 0.05). These results were supported by histological studies using H&E staining. The ELISA and q-real-time PCR techniques showed the range of IFN-γ, IL-12, IL-4, and IL-17A cytokines in the infused mice by recombinant vector alone or combined with nanoparticles compared to the healthy mice and infused animals by intact pBudCE4.1 were significantly increased (p < 0.05). Accordingly, the expression of the tumor markers CEA, Krt20, and Muc1 were significantly decreased in treated mice either by the sole recombinant vector or combined with nanoparticles (p < 0.05). These findings indicated that pBudCE4.1-azurin-MAM-A recombinant vector plays an essential role against the formation and expansion of breast tumors in the animal model. In addition, this recombinant vector is safe and has the proper ability to stimulate the immune system. In addition, the chitosan nanoparticle represents a promising adjuvant for DNA vaccine delivery, which improves the immune system stimulation and boosts the vaccine performance.

Bli med på
facebooksiden vår

Den mest komplette databasen med medisinske urter støttet av vitenskap

  • Fungerer på 55 språk
  • Urtekurer støttet av vitenskap
  • Urtegjenkjenning etter bilde
  • Interaktivt GPS-kart - merk urter på stedet (kommer snart)
  • Les vitenskapelige publikasjoner relatert til søket ditt
  • Søk medisinske urter etter deres effekter
  • Organiser dine interesser og hold deg oppdatert med nyheter, kliniske studier og patenter

Skriv inn et symptom eller en sykdom og les om urter som kan hjelpe, skriv en urt og se sykdommer og symptomer den brukes mot.
* All informasjon er basert på publisert vitenskapelig forskning

Google Play badgeApp Store badge