Norwegian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 2000-Jun

The protective effects of hypoxia-induced hypometabolism in the Nautilus.

Bare registrerte brukere kan oversette artikler
Logg inn Registrer deg
Koblingen er lagret på utklippstavlen
R G Boutilier
T G West
D M Webber
G H Pogson
K A Mesa
J Wells
M J Wells

Nøkkelord

Abstrakt

Specimens of Nautilus pompilius were trapped at depths of 225-300 m off the sunken barrier reef southeast of Port Moresby, Papua New Guinea. Animals transported to the Motupore Island laboratory were acclimated to normal habitat temperatures of 18 degrees C and then cannulated for arterial and venous blood sampling. When animals were forced to undergo a period of progressive hypoxia eventually to encounter ambient partial pressure of oxygen (PO2) levels of approximately 10 mmHg (and corresponding arterial PO2's of approximately 5 mmHg), they responded by lowering their aerobic metabolic rates to 5-10% of those seen in resting normoxic animals. Coincident with this profound metabolic suppression was an overall decrease in activity, with brief periods of jet propulsion punctuating long periods of rest. Below ambient PO2 levels of 30-40 mmHg, ventilatory movements became highly periodic and at the lowest PO2 levels encountered, ventilation occasionally ceased altogether. Cardiac output estimated by the Fick equation decreased during progressive hypoxia by as much as 75 80%, and in the deepest hypometabolic states heart rates slowed to one to two cycles of very low amplitude per minute. By the end of 500 min exposure to ambient PO2 levels of 10 mmHg or less, the anaerobic end products octopine and succinate had increased significantly in adductor muscle and heart, respectively. Increased concentrations of octopine in adductor muscle apparently contributed to a small intracellular acidosis and to the development of a combined respiratory and metabolic acidosis in the extracellular compartment. On the other hand, increases in succinate in heart muscle occurred in the absence of any change in cardiac pHi. Taken together, we estimate that these anaerobic end products would make up less than 2% of the energy deficit arising from the decrease in aerobic metabolism. Thus, metabolic suppression is combined with a massive downregulation of systemic O2 delivery to match metabolic supply to demand.

Bli med på
facebooksiden vår

Den mest komplette databasen med medisinske urter støttet av vitenskap

  • Fungerer på 55 språk
  • Urtekurer støttet av vitenskap
  • Urtegjenkjenning etter bilde
  • Interaktivt GPS-kart - merk urter på stedet (kommer snart)
  • Les vitenskapelige publikasjoner relatert til søket ditt
  • Søk medisinske urter etter deres effekter
  • Organiser dine interesser og hold deg oppdatert med nyheter, kliniske studier og patenter

Skriv inn et symptom eller en sykdom og les om urter som kan hjelpe, skriv en urt og se sykdommer og symptomer den brukes mot.
* All informasjon er basert på publisert vitenskapelig forskning

Google Play badgeApp Store badge