Polish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The FEBS journal 2009-Jul

The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum.

Tylko zarejestrowani użytkownicy mogą tłumaczyć artykuły
Zaloguj się Zarejestruj się
Link zostanie zapisany w schowku
Emanuela Balconi
Andrea Pennati
Danila Crobu
Vittorio Pandini
Raffaele Cerutti
Giuliana Zanetti
Alessandro Aliverti

Słowa kluczowe

Abstrakcyjny

In the apicoplast of apicomplexan parasites, plastidic-type ferredoxin and ferredoxin-NADP(+) reductase (FNR) form a short electron transport chain that provides reducing power for the synthesis of isoprenoid precursors. These proteins are attractive targets for the development of novel drugs against diseases such as malaria, toxoplasmosis, and coccidiosis. We have obtained ferredoxin and FNR of both Toxoplasma gondii and Plasmodium falciparum in recombinant form, and recently we solved the crystal structure of the P. falciparum reductase. Here we report on the functional properties of the latter enzyme, which differ markedly from those of homologous FNRs. In the physiological reaction, P. falciparum FNR displays a k(cat) five-fold lower than those usually determined for plastidic-type FNRs. By rapid kinetics, we found that hydride transfer between NADPH and protein-bound FAD is slower in the P. falciparum enzyme. The redox properties of the enzyme were determined, and showed that the FAD semiquinone species is highly destabilized. We propose that these two features, i.e. slow hydride transfer and unstable FAD semiquinone, are responsible for the poor catalytic efficiency of the P. falciparum enzyme. Another unprecedented feature of the malarial parasite FNR is its ability to yield, under oxidizing conditions, an inactive dimeric form stabilized by an intermolecular disulfide bond. Here we show that the monomerdimer interconversion can be controlled by oxidizing and reducing agents that are possibly present within the apicoplast, such as H(2)O(2), glutathione, and lipoate. This finding suggests that modulation of the quaternary structure of P. falciparum FNR might represent a regulatory mechanism, although this needs to be verified in vivo.

Dołącz do naszej strony
na Facebooku

Najbardziej kompletna baza danych ziół leczniczych poparta naukowo

  • Działa w 55 językach
  • Ziołowe leki poparte nauką
  • Rozpoznawanie ziół na podstawie obrazu
  • Interaktywna mapa GPS - oznacz zioła na miejscu (wkrótce)
  • Przeczytaj publikacje naukowe związane z Twoim wyszukiwaniem
  • Szukaj ziół leczniczych po ich działaniu
  • Uporządkuj swoje zainteresowania i bądź na bieżąco z nowościami, badaniami klinicznymi i patentami

Wpisz objaw lub chorobę i przeczytaj o ziołach, które mogą pomóc, wpisz zioło i zobacz choroby i objawy, na które są stosowane.
* Wszystkie informacje oparte są na opublikowanych badaniach naukowych

Google Play badgeApp Store badge