8 wyniki
The symbiosis between Vallisneria denseserrulata and indigenous Bacillus sp. XZM was investigated for arsenic removal for the first time. It was found that the native bacterium was able to reduce arsenic toxicity to the plant by producing higher amount of extra cellular polymeric substances (EPS),
Influences of sulfur (S) on the accumulation and detoxification of arsenic (As) in Vallisneria natans (Lour.) Hara, an arsenic hyperaccumulating submerged aquatic plant, were investigated. At low sulfur levels (<20 mg/L), the thiols and As concentrations in the plant increased significantly with
Vallisneria natans (Lour.) Hara, a widely distributed submerged aquatic plant, is a promising species for arsenic (As) removal from contaminated water. We investigated the effects of pH on the accumulation, subcellular distribution and detoxification of As in V. natans. The results showed that the
Cyanobacterial blooms cause potential risk to submerged macrophytes and biofilms in eutrophic environments. This pilot-scale study investigated the growth, oxidative responses, and detoxification activity of aquatic plants in response to cyanobacterial blooms under different phosphorus
Phytochelatins (PCs) have been involved in metal detoxification, and used as potential biomarkers for an evaluation of metal toxicity. However, most studies have generally been limited to high concentrations of metals. In this study, low concentrations of cadmium (Cd) (0.01-0.64 microM) usually
Arsenic contamination of water is a global concern due to its heavy threat to human health. In this study, the submerged macrophyte Vallisneria natans (Lour.) Hara was used to remove environmentally relevant concentrations of arsenic in the binary As(III)/As(V) system. The concentrations of total
Arsenic (As) pollution of fresh water has become a major concern worldwide. The present study reports the As accumulation potential and detoxification mechanism in a native plant, Vallisneria denseserrulata (Makino), under different aquatic acidity conditions (pH). V. denseserrulata
Microcystins produced by cyanobacteria in the aquatic environment are a potential risk to aquatic plants. In the present study, the uptake of microcystin-LR (MC-LR) and related physiological and biochemical effects on Vallisneria natans (Lour.) Hara were investigated at concentrations of 0.1-25.0 μg