Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2019-Aug

Acetylsalicylic acid biosorption onto fungal-bacterial biofilm supported on activated carbons: an investigation via batch and fixed-bed experiments.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Luma Bó
Rosane Almeida
Carlos Cardoso
Danilo Zavarize
Sarah Brum
Andressa Mendonça

Palavras-chave

Resumo

This study reports on acetylsalicylic acid (ASA) biosorption onto fungal-bacterial biofilm supported on two types of activated carbons (one commercial type made of coconut fibers, CAC, and one other manufactured from fruit rinds of Hymenaea stigonocarpa Mart., HYAC, which after biofilm inoculation, they were named CAC-b and HYAC-b), via batch and fixed-bed experiments. These materials were characterized by BET Specific Surface Area and Scanning Electronic Microscopy (SEM). Biosorption onto HYAC-b was 57.2% higher than HYAC. Despite presenting the highest biosorption capacity over time (qt = 85.4 ± 0.82 mg g-1), CAC-b had a lower increase in efficiency (32.4%) compared to CAC. Kinetic data from the biosorption experiments responded well to the pseudo-first-order model thus suggests the predominance of physisorption, while without biofilm presence, there was a better agreement with the pseudo-second-order model, suggesting chemisorption. The possible interaction mechanism of ASA to biofilm was attributed to ionic forces between the drug in anionic form and eventual presence of cationic by-products of the biologically active surface metabolism. Biosorption equilibrium data responded better to the Sips model and CAC-b presented the highest biosorption capacity (qe = 292.4 ± 2.01 mg g-1). A combination of faster volumetric flow rates, higher inlet concentrations and shorter beds accelerated the breakthrough time of ASA biosorption in the fixed-bed experiments. These operational conditions affected C/Co ratio in the following magnitude order: volumetric flow rate < inlet concentration < bed height. Breakthrough data responded better to the modified dose-response model compared to Thomas and Yoon-Nelson models.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge