Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2019-Jul

Activation of Nrf2 by costunolide provides neuroprotective effect in PC12 cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Shoujiao Peng
Yanan Hou
Juan Yao
Jianguo Fang

Palavras-chave

Resumo

Costunolide (COS) is a natural sesquiterpene lactone originally isolated from Inula helenium (Compositae). Although COS is known for its multiple pharmacological activities, neuroprotection of COS has not been fully elucidated. Increasing evidence demonstrates that oxidative stress is strongly associated with the progression and pathogenesis of neurodegenerative diseases. As NF-E2 related factor 2 (Nrf2) is an important transcription factor for the regulation of cellular redox homeostasis, small molecules with the ability to activate the Nrf2 pathway are promising neuroprotective agents. Herein, we investigated the potential mechanism of Nrf2-mediated neuroprotection against oxidative damage by COS in the neuron-like rat pheochromocytoma cell line (PC12 cells). Our results demonstrated that COS could activate Nrf2 to counteract the oxidative injuries of PC12 cells. COS facilitated the Nrf2 nuclear translocation, and knockdown of Nrf2 almost abrogated the cytoprotection of COS, demonstrating that activation of Nrf2 acted as an essential step in this cytoprotective process. After treatment with COS, a range of antioxidant genes governed by Nrf2 were upregulated, and subsequently the expressions and activities of these gene products were also induced. Furthermore, COS attenuates the cellular reactive oxygen species level and restores cellular thiol homeostasis, supporting that COS was involved in maintaining the cellular redox balance. Taken together, our study indicates that COS provides neuroprotection via activating the Nrf2 signaling pathway in PC12 cells.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge