Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Journal of trauma 2006-May

Acute respiratory distress syndrome secondary to inhalation of chlorine gas in sheep.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Andriy I Batchinsky
David K Martini
Bryan S Jordan
Edward J Dick
James Fudge
Candace A Baird
Denise E Hardin
Leopoldo C Cancio

Palavras-chave

Resumo

BACKGROUND

Toxic industrial chemicals (TICs) are potential terrorist weapons. Several TICs, such as chlorine, act primarily on the respiratory tract, but knowledge of the pathophysiology and treatment of these injuries is inadequate. This study aims to characterize the acute respiratory distress syndrome (ARDS) caused by chlorine gas (Cl2) inhalation in a large-animal model.

METHODS

Anesthetized female sheep were ventilated with 300 L of a Cl2/air/oxygen mixture for 30 minutes. In phase 1 (n = 35), doses were 0 ppm (Group 1, n = 6); 120 ppm (Group 2, n = 6); 240 to 350 ppm (Group 3, n = 11); and 400 to 500 ppm (Group 4, n = 12). In phase 2 (n = 17), doses were 0 ppm (Group 5, n = 5); 60 ppm (Group 6, n = 5); and 90 ppm (Group 7, n = 7), and the multiple inert gas elimination technique (MIGET) was used to characterize the etiology of hypoxemia. Computed tomography (CT) scans were performed daily for all animals.

RESULTS

In Phase 1, lung function was well maintained in Group 1; Cl2 caused immediate and sustained acute lung injury (PaO2-to-FiO2 ratio, PFR<3.0) in Group 2 and ARDS (PFR<2.0) in Groups 3 and 4. All animals in Groups 1 and 2 survived 96 hours. Kaplan-Meier analysis showed dose-related differences in survival (log-rank test, p < 0.0001). Logistic regression identified 280 ppm as the lethal dose 50%. CT and histopathology demonstrated lesions of both small airways and alveoli. In Phase 2, MIGET showed diversion of blood flow from normal to true-shunt lung compartments and, transiently, to poorly ventilated compartments.

CONCLUSIONS

Cl2 causes severe, dose-related lung injury, with features seen in both smoke inhalation and in ARDS secondary to systemic disease. This model will be used to test new therapeutic modalities.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge