Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology Reports 2018-Nov

Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Berrak Caglayan
Ertugrul Kilic
Arman Dalay
Serdar Altunay
Mehmet Tuzcu
Fusun Erten
Cemal Orhan
Mehmet Yalcin Gunal
Burak Yulug
Vijaya Juturu

Palavras-chave

Resumo

Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in young adults and children in the industrialized countries; however, there are presently no FDA approved therapies. TBI results in oxidative stress due to the overproduction of reactive oxygen species and overwhelming of the endogenous antioxidant mechanisms. Recently, it has been reported that antioxidants including phytochemicals have a protective role against oxidative damage and inflammation after TBI. To analyze the effects of a naturally occurring antioxidant molecule, allyl isothiocyanate (AITC), on the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) signaling pathways in TBI, a cryogenic injury model was induced in mice. Here, we showed that AITC administered immediately after the injury significantly decreased infarct volume and blood-brain barrier (BBB) permeability. Protein levels of proinflammatory cytokines interleukin-1β (IL1β) and interleukin-6 (IL6), glial fibrillary acidic protein (GFAP) and NF-κB were decreased, while Nrf2, growth-associated protein 43 (GAP43) and neural cell adhesion molecule levels were increased with AITC when compared with vehicle control. Our results demonstrated that the antioxidant molecule AITC, when applied immediately after TBI, provided beneficial effects on inflammatory processes while improving infarct volume and BBB permeability. Increased levels of plasticity markers, as well as an antioxidant gene regulator, Nrf2, by AITC, suggest that future studies are warranted to assess the protective activities of dietary or medicinal AITC in clinical studies.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge