Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 1999-Dec

An Arabidopsis gene encoding a chloroplast-targeted beta-amylase.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
N T Lao
O Schoneveld
R M Mould
J M Hibberd
J C Gray
T A Kavanagh

Palavras-chave

Resumo

beta-Amylase is one of the most abundant starch degrading activities found in leaves and other plant organs. Despite its abundance, most if not all of this activity has been reported to be extrachloroplastic and for this reason, it has been assumed that beta-amylases are not involved in the metabolism of chloroplast-localized transitory leaf starch. However, we have identified a novel beta-amylase gene, designated ct-Bmy, which is located on chromosome IV of Arabidopsis thaliana. Ct-Bmy encodes a precursor protein which contains a typical N-terminal chloroplast import signal and is highly similar at the amino acid level to extrachloroplastic beta-amylases of higher plants. Expression of the ct-Bmy cDNA in E. coli confirmed that the encoded protein possesses beta-amylase activity. CT-BMY protein, synthesized in vitro, was efficiently imported by isolated pea chloroplasts and shown to be located in the stroma. In addition, fusions between the predicted CT-BMY transit peptide and jellyfish green fluorescent protein (GFP) or the entire CT-BMY protein and GFP showed accumulation in vivo in chloroplasts of Arabidopsis. Expression of the GUS gene fused to ct-Bmy promoter sequences was investigated in transgenic tobacco plants. GUS activity was most strongly expressed in the palisade cell layer in the leaf blade and in chlorenchyma cells associated with the vascular strands in petioles and stems. Histochemical staining of whole seedlings showed that GUS activity was largely confined to the cotyledons during the first 2 weeks of growth and appeared in the first true leaves at approximately 4 weeks.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge