Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the Western Pharmacology Society 2002

An introduction to migraine: from ancient treatment to functional pharmacology and antimigraine therapy.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
C M Villalón
D Centurión
L F Valdivia
P De Vries
P R Saxena

Palavras-chave

Resumo

Migraine treatment has evolved from the realms of the supernatural into the scientific arena, but it seems still controversial whether migraine is primarily a vascular or a neurological dysfunction. Irrespective of this controversy, the levels of serotonin (5-hydroxytryptamine; 5-HT), a vasoconstrictor and a central neurotransmitter, seem to decrease during migraine (with associated carotid vasodilatation) whereas an i.v. infusion of 5-HT can abort migraine. In fact, 5-HT as well as ergotamine, dihydroergotamine and other antimigraine agents invariably produce vasoconstriction in the external carotid circulation. The last decade has witnessed the advent of sumatriptan and second generation triptans (e.g. zolmitriptan, rizatriptan, naratriptan), which belong to a new class of drugs, now known as 5-HT1B/1D/1F receptor agonists. Compared to sumatriptan, the second-generation triptans have a higher oral bioavailability and longer plasma half-life. In line with the vascular and neurogenic theories of migraine, all triptans produce selective carotid vasoconstriction (via 5-HT1B receptors) and presynaptic inhibition of the trigeminovascular inflammatory responses implicated in migraine (via 5-HT1D/5-ht1F receptors). Moreover, selective agonists at 5-HT1D (PNU-142633) and 5-ht1F (LY344864) receptors inhibit the trigeminovascular system without producing vasoconstriction. Nevertheless, PNU-142633 proved to be ineffective in the acute treatment of migraine, whilst LY344864 did show some efficacy when used in doses which interact with 5-HT1B receptors. Finally, although the triptans are effective antimigraine agents producing selective cranial vasoconstriction, efforts are being made to develop other effective antimigraine alternatives acting via the direct blockade of vasodilator mechanisms (e.g. antagonists at CGRP receptors, antagonists at 5-HT7 receptors, inhibitors of nitric oxide biosynthesis, etc). These alternatives will hopefully lead to fewer side-effects.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge