Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ciba Foundation symposium 1981

Animal models of tinnitus.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
E F Evans
J P Wilson
T A Borerwe

Palavras-chave

Resumo

There are few physiological data available on the origin and nature of tinnitus. It is not even known whether tinnitus associated with cochlear pathology is a manifestation of increased or decreased activity in the cochlear nerve. In previous investigations of cochlear pathology, the spontaneous neural activity has generally been found to be depressed. In the present experiments, an animal model has been established by the administration of sodium salicylate in doses producing blood concentrations that evoke tinnitus in humans. Under these conditions, changes occur in cochlear nerve-fibre thresholds and tuning, similar to those obtained in other types of cochlear pathology. However, under salicylate, the distribution of spontaneous discharge shifts significantly to higher rates than normal. These changes are accompanied in some, but not all, fibres by changes in the temporal patterns of discharge suggestive of excitation. In the second animal model studied, a normal guinea-pig that had a naturally occurring continuous tonal emission, analogous to that recently recorded in human "physiological" tinnitus, was investigated in detail. The emitted signal was recorded in the ear-canal acoustic pressure and in the round-window potential. Several lines of evidence point to the signal as being cochlear in origin, including: its resistance to muscular paralysis and section of the stapedius muscle; the effects of changes in middle-ear pressure; its reversible elimination by hypoxia; and its suppression by tones of higher frequency.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge