Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2018-Mar

Anthocyanin complex exerts anti-cholangiocarcinoma activities and improves the efficacy of drug treatment in a gemcitabine-resistant cell line.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Kitti Intuyod
Aroonsri Priprem
Chawalit Pairojkul
Chariya Hahnvajanawong
Kulthida Vaeteewoottacharn
Porntip Pinlaor
Somchai Pinlaor

Palavras-chave

Resumo

Cholangiocarcinoma (CCA) is a deleterious bile duct tumor with poor prognosis and is relatively resistant to chemotherapy. Therefore, alternative or supplementary agents with anticancer and chemosensitizing activities may be useful for the treatment of CCA. A novel anthocyanin complex (AC) nanoparticle, developed from extracts of cobs of purple waxy corn and petals of blue butterfly pea, has exhibited chemopreventive potential in vivo. In the present study, the anti-CCA activities of AC and their underlying molecular mechanisms were investigated further in vitro using a CCA cell line (KKU213). The potential use of AC as a chemosensitizer was also evaluated in a gemcitabine-resistant CCA cell line (KKU214GemR). It was demonstrated that AC treatment suppressed proliferation of KKU213 CCA cells in dose- and time-dependent manners. AC treatment also induced apoptosis and mitochondrial superoxide production, decreased clonogenicity of CCA cells, and downregulated forkhead box protein M1 (FOXM1), nuclear factor-κB (NF-κB) and pro-survival protein B-cell lymphoma-2 (Bcl-2). The expression of endoplasmic reticulum (ER) stress-response proteins, including protein kinase RNA-like ER kinase, phosphorylated eIF2α, eukaryotic initiation factor 2α and activating transcription factor 4, also decreased following AC treatment. It was also identified that AC treatment inhibited KKU214GemR cell proliferation in dose- and time-dependent manners. Co-treatment of KKU214GemR cells with low doses of AC together with gemcitabine significantly enhanced efficacy of the latter against this cell line. Therefore, it is suggested that AC treatment is cytotoxic to KKU213 cells, possibly via downregulation of FOXM1, NF-κB, Bcl-2 and the ER stress response, and by induction of mitochondrial superoxide production. AC also sensitizes KKU214GemR to gemcitabine treatment, which may have potential for overcoming drug resistance of CCA.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge