Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
CNS Neuroscience and Therapeutics 2014-Apr

Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathway in hippocampal neurons.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ikram Ullah
Hyun Young Park
Myeong Ok Kim

Palavras-chave

Resumo

BACKGROUND

Excitotoxicity is an important mechanism involved in neurodegeneration. Kainic acid (KA)-induced excitotoxicity results an unfavorable stress, and we investigated the signaling pathways activated in such conditions.

OBJECTIVE

Here, we sought to determine the cellular and biochemical benefits of anthocyanins extracted from Korean black bean against KA-induced excitotoxicity and neuronal cell death.

RESULTS

Mouse hippocampal cell line (HT22) and primary prenatal rat hippocampal neurons were treated with KA to induce excitotoxicity. Incubation of the cells with KA alone significantly decreased cell viability, elevated intracellular Ca(2+) level, increased generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (Δψ(M)). These events were accompanied by sustained phosphorylation and activation of AMP-activated protein kinase (AMPK). Kainic acid induced upregulation of Bax, decrease in Bcl-2, release of cytochrome-c, and activation of caspase-3 in both cell types. Anthocyanins attenuated KA-induced dysregulation of Ca(2+), ROS accumulation, activation of AMPK, and increase in percentage of apoptotic cells. Pretreatment of the cells with compound C, an inhibitor of AMPK, diminished the KA-induced activation of AMPK and caspase-3. The activation of AMPK through elevation of cellular ROS and Ca(2+) levels is required for KA-induced apoptosis in hippocampal neurons.

CONCLUSIONS

In summary, our data suggest that although anthocyanins have diverse activities, at least part of their beneficial effects against KA-induced hippocampal degeneration can be attributed to their well-recognized antioxidant properties.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge