Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2015-Dec

Anti-inflammatory Effects of Poly-L-lysine in Intestinal Mucosal System Mediated by Calcium-Sensing Receptor Activation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yoshinori Mine
Hua Zhang

Palavras-chave

Resumo

Calcium-sensing receptor (CaSR) is involved in maintaining cellular homeostasis and promoting recovery of damaged intestinal epithelial cells (IECs). Poly-L-lysine (PL) is a basic polypeptide identified for its role in the activation of CaSR through allosteric binding. The primary goal of the current study was to identify the modulatory effect of PL on intestinal inflammation and to determine whether these effects were mediated by CaSR activation. We used human intestinal epithelial cell lines, Caco-2 and HT-29, to assess PL anti-inflammatory activities in vitro. We found that PL reduced the IL-8 secretion from tumor necrosis factor (TNF)-α-treated human intestinal epithelial cell lines. On the other hand, the gene expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited by PL supplementation. We subsequently evaluated the anti-inflammatory activity of PL in vivo using a DSS-induced mouse colitis model. PL supplementation was shown to prevent dextran sulfate sodium salt (DSS)-induced loss of weight, colitic symptoms, and shortening of colon length but maintained colonic morphology. The pro-inflammatory cytokine expression in the mouse colon, including TNF-α, IL-6, INF-γ, IL-17, and IL-1β, was significantly up-regulated by DSS treatment, but was inhibited upon PL administration. As shown by the results from both in vitro and in vivo studies, the reduction of inflammatory cytokine production caused by PL was reversed by NPS-2143 pretreatment. In the present study, we provide evidence that PL exerts anti-inflammatory effects on the gut system, which is primarily mediated by allosteric ligand activation of CaSR.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge