Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Feb

Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Chandana Pandey
Rehna Augustine
Medha Panthri
Ismat Zia
Naveen C Bisht
Meetu Gupta

Palavras-chave

Resumo

Arsenic (As), a non-essential metalloid, severely affects the normal functioning of plants, animals and humans. Plants play a crucial role in metabolic, physiological and numerous detoxification mechanisms to cope up with As induced stress. This study aimed to examine the differential response in two Brassica juncea cultivars, Varuna and Pusa Jagannath (PJn) exposed to different doses of As (50, 150, 300 μM) for 48 h duration. Change in morphological traits, concentration of individual as well as total GSL, sulfur related thiol proteins, sulfur content, and phytochemicals were analyzed in both cultivars. Accumulation pattern of As showed dose dependent accumulation in both the cultivars, being more in PJn. Our finding revealed that both cultivars were tolerant at low concentrations of As, while at higher concentration Varuna excelled over PJn. The increased tolerance of Varuna cultivar exposed to 150 and 300 μM concentration of As, correlated with its increased thiol related proteins, sulfur content and phytochemicals, which serves as defence strategy in the plant against oxidative stress. Differential pattern of total as well as individual GSLs content was observed in both Varuna and PJn cultivars. Varuna cultivar showed higher level of total and aliphatic GSLs, which serves as defence compound with other detoxification machineries to combat As stress. Our findings provide foundation for developing metalloid tolerant crops by analyzing the role of different genes involved in GSL mechanism and signaling pathways in different organs of plant.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge