Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2018-Mar

Assessment of the anti-snakebite properties of extracts of Aniba fragrans Ducke (Lauraceae) used in folk medicine as complementary treatment in cases of envenomation by Bothrops atrox.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Valéria Mourão de Moura
Noranathan da Costa Guimarães
Luana Travassos Batista
Luciana A Freitas-de-Sousa
Joanderson de Sousa Martins
Maria Carolina Scheffer de Souza
Patrícia D Oliveira de Almeida
Wuelton Marcelo Monteiro
Ricardo Bezerra de Oliveira
Maria Cristina Dos-Santos

Palavras-chave

Resumo

BACKGROUND

Extracts of leaves and bark of Aniba fragrans are used as tea (decoction) to treat snakebites in communities in the Brazilian Amazon. The aqueous extract of the leaves of A. fragrans has been proven to be effective against Bothrops venom, but only when pre-incubated with the venom. This study sought to assess the potential of different types of extract of this species to inhibit the biological activities of Bothrops atrox venom (BaV) when used the same way as in folk medicine. The main classes of secondary metabolites and the concentrations of phenolics in the extracts were also determined.

METHODS

Four types of extract of A. fragrans were prepared: aqueous extract of the leaf (AEL), aqueous extract of the bark (AEB), hydroalcoholic leaf extract (HLE) and extract of the residue from hydrodistillation of the leaf (ERHL). The phytochemical profiles of the aqueous extracts were determined using thin layer chromatography (TLC), and the concentrations of phenolics were measured by colorimetric assays. To investigate the potential of the extracts to inhibit the biological activities of BaV, in vitro tests for antiphospholipase and antifibrinolytic activities were performed. In vivo tests for antihemorrhagic and antidefibrinating activities were also carried out, as well as antimicrobial tests for activity against the main bacteria found in the oral cavity of snakes. Interaction between the extracts and the proteins in BaV was assessed by electrophoresis (SDS-PAGE) and Western blot (WB). The cytotoxicity of the extracts was assessed in a strain of MRC-5 human fibroblasts.

RESULTS

Terpenoids, flavonoids and condensed and hydrolysable tannins were detected in all the extracts. Metabolites such as coumarins, fatty acids and alkaloids were present in some extracts but not in others, indicating different phytochemical profiles. Phenolics content varied between extracts, and there were more tannins in AEB and HLE. In the in vitro tests, the extracts inhibited the phospholipase and fibrinolytic activities of BaV in the two ratios of venom to extract used. HLE exhibited effective antimicrobial action as it inhibited growth of 11 of the 15 bacteria investigated, including Morganella morganii, the main bacteria described in the oral cavity of snakes. The extracts failed to inhibit the defibrinating activity of BaV, and only the Bothrops antivenom had a significant effect (96.1%) on this activity. BaV-induced hemorrhage was completely inhibited by AEL and AEB when the pre-incubation (venom:extract) protocol was used. When administered orally, as in folk medicine, both AEB and AEL produced significant inhibition of hemorrhagic activity (maximum inhibition 46.5% and 39.2%, respectively). SDS-PAGE and WB of the extracts pre-incubated with BaV showed that the main proteins in the venom had been precipitated by the extracts. None of the four extracts showed cytotoxic effects in the tests carried out with a human fibroblast cell line.

CONCLUSIONS

In addition to being effective in reducing hemorrhage when administered orally, the extracts displayed a high antimicrobial potential against microorganisms involved in secondary infections at the site of the snakebite. Once the extracts have been tested in accordance with the appropriate regulations, this species could potentially be used to produce a phytomedicine for complementary treatment of the secondary infections due to bacteria that aggravate the local signs and symptoms after snakebite envenomation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge