Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 2011-Mar

Biocontrol treatments confer protection against Verticillium dahliae infection of potato by inducing antimicrobial metabolites.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
A El Hadrami
L R Adam
F Daayf

Palavras-chave

Resumo

Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious potato (Solanum tuberosum L.) disease worldwide, and biocontrol represents a promising eco-friendly strategy to reduce its impact. We used extracts from Canada milk vetch (CMV) and a set of four V. dahliae-antagonistic bacterial strains to coat potato seeds at planting and examined the degree of protection provided against V. dahliae as well as accumulation of soluble phenolics as markers for induced resistance. All tested treatments were effective in reducing disease severity, and CMV showed the highest level of protection. In this treatment, flavonol-glycoside rutin was a highly abundant compound induced in potato tissues, with levels two to three times higher than those detected in noninoculated controls and V. dahliae-inoculated plants. We investigated dose-dependent effects of rutin on V. dahliae growth and sporulation in vitro and in planta. The effect of rutin on mycelial growth was inconsistent between disk assay and amended medium experiments. On the other hand, significant reduction of V. dahliae sporulation in vitro was consistently observed starting at 300 and 100 μM for isolates Vd-9 and Vd-21, respectively. We successfully detected 2-protocatechuoylphloroglucinolcarboxylic acid (2-PCPGCA) using ultra-performance liquid chromatography tandem mass spectrometry, indicating that V. dahliae dioxygenally oxidizes quercetin. Quercetin, as an aglycone, is freed from the sugar moiety by glucosidases and rhamnosidases produced by the fungus and is a substrate for quercetinases. The occurrence of quercetinases in V. dahliae provides a background to formulate a hypothesis about how by-product 2-PCPGCA may be interfering with potato defenses.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge