Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2018-Feb

Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jayaraman Narenkumar
Punniyakotti Parthipan
Jagannathan Madhavan
Kadarkarai Murugan
Sreekar Babu Marpu
Anil Kumar Suresh
Aruliah Rajasekar

Palavras-chave

Resumo

Silver nanoparticle-aided enhancement in the anti-corrosion potential and stability of plant extract as ecologically benign alternative for microbially induced corrosion treatment is demonstrated. Bioengineered silver nanoparticles (AgNPs) surface functionalized with plant extract material (proteinacious) was generated in vitro in a test tube by treating ionic AgNO3 with the leaf extract of Azadirachta indica that acted as dual reducing as well as stabilizing agent. Purity and crystallinity of the AgNPs, along with physical and surface characterizations, were evaluated by performing transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectra, single-area electron diffractions, zeta potential, and dynamic light scattering measurements. Anti-corrosion studies against mild steel (MS1010) by corrosion-inducive bacterium, Bacillus thuringiensis EN2 isolated from cooling towers, were evaluated by performing electrochemical impedance spectroscopy (EIS), weight loss analysis, and surface analysis by infrared spectroscopy. Our studies revealed that AgNPs profoundly inhibited the biofilm on MS1010 surface and reduced the corrosion rates with the CR of 0.5 mm/y and an inhibition efficiency of 77% when compared to plant extract alone with a CR of 2.2 mm/y and an inhibition efficiency of 52%. Further surface analysis by infrared spectra revealed that AgNPs formed a protective layer of self-assembled film on the surface of MS1010. Additionally, EIS and surface analysis revealed that the AgNPs have inhibited the bacterial biofilm and reduced the pit on MS1010. This is the first report disclosing the application of bioengineered AgNP formulations as potent anti-corrosive inhibitor upon forming a protective layer over mild steel in cooling water towers. Graphical Abstract ᅟ.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge