Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2019-Feb

Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Lei Wang
Chao Li
Qiang Huang
Xiong Fu

Palavras-chave

Resumo

Defective glucose-stimulated insulin secretion (GSIS) induced by chronic exposure to reactive oxygen species (ROS) is a hallmark of type 2 diabetes mellitus (T2DM). Therefore, it is of great interest to search for biofunctional agents with antioxidant activity to protect pancreatic islet cells from oxidative damage. In the present study, selenium nanoparticles (SeNPs) functionalized with a novel polysaccharide (RTFP-3) extracted from Rosa roxburghii fruit were first prepared via a facile, single-step and green in situ synthesis method. The in vitro protective effects of RP3-SeNPs on INS-1 cells against H2O2-induced cell apoptosis were investigated. Structural characterization indicated that RTFP-3-functionalized SeNPs (RP3-SeNPs) with an average diameter of 104.5 nm were highly uniform and extremely stable in comparison with bare SeNPs. The results of bioassays revealed that RP3-SeNPs possessed much higher protective and suppressive activities against H2O2-induced apoptosis of INS-1 cells in comparison with their individual components. After treatment with an RP3-SeNPs solution (2 μg mL-1), the cell viability of INS-1 cells reached about 89.34%. Mechanistic studies demonstrated that RP3-SeNPs effectively blocked the overproduction of intracellular ROS, mitochondrial damage, and the activation of caspase-3, caspase-8, and caspase-9 in INS-1 cells, which indicated that RP3-SeNPs functioned via attenuating oxidative stress and downregulating the expression of uncoupling protein-2 (UCP-2). Our findings suggest that RP3-SeNPs can function as a promising candidate to prevent or limit the dysfunction of β-cells.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge