Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2007

Calystegines in potatoes with genetically engineered carbohydrate metabolism.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ute Richter
Uwe Sonnewald
Birgit Dräger

Palavras-chave

Resumo

Calystegines are hydroxylated nortropane alkaloids derived from the tropane alkaloid biosynthetic pathway. They are strong glycosidase inhibitors and occur in vegetables such as potatoes, tomatoes, and cabbage. Calystegine accumulation in root cultures was described to increase with carbohydrate availability. Whether this is indicative for the in planta situation is as yet unknown. Potatoes are model plants for the study of carbohydrate metabolism. Numerous transgenic potato lines with altered carbohydrate metabolism are available, but rarely were examined for alterations in secondary metabolism. In this study, calystegine accumulation and expression of biosynthetic enzymes were related to genetic modifications in carbohydrate metabolism in potato tubers. Tubers contained more soluble sugars due to overexpression of yeast invertase in the apoplast or in the cytosol, or due to antisense suppression of sucrose synthase. It is shown that the major part of calystegines in tubers originated from biosynthesis in plant roots. Yet, tuber calystegine levels responded to genetic alterations of carbohydrate metabolism in tubers. The strongest increase in calystegines was found in tubers with suppressed sucrose synthase activity. Transcripts and enzyme activities involved in calystegine biosynthesis largely concurred with product accumulation. Whole plant organs were examined similarly and displayed higher calystegines and corresponding enzyme activities in roots and stolons of plants with enhanced soluble sugars. Increases in calystegines appear to be linked to sucrose availability.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge