Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell 1994-Dec

Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
B Karunanandaa
S Huang
T Kao

Palavras-chave

Resumo

For Petunia inflata and Nicotiana alata, which display gametophytic self-incompatibility, S proteins (the products of the multiallelic S gene in the pistil) have been shown to control the pistil's ability to recognize and reject self-pollen. The biochemical mechanism for rejection of self-pollen by S proteins has been shown to involve their ribonuclease activity; however, the molecular basis for self/non-self recognition by S proteins is not yet understood. Here, we addressed whether the glycan chain of the S3 protein of P. inflata is involved in self/non-self recognition by producing a nonglycosylated S3 protein in transgenic plants and examining the effect of deglycosylation on the ability of the S3 protein to reject S3 pollen. The S3 gene was mutagenized by replacing the codon for Asn-29, which is the only potential N-glycosylation site of the S3 protein, with a codon for Asp, and the mutant S3 gene was introduced into P. inflata plants of the S1S2 genotype. Six transgenic plants that produced a normal level of the nonglycosylated S3 protein acquired the ability to reject S3 pollen completely. These results suggest that the carbohydrate moiety of the S3 protein does not play a role in recognition or rejection of self-pollen and that the S allele specificity determinant of the S3 protein and those S proteins that contain a single glycan chain at the same site as the S3 protein must reside in the amino acid sequence itself.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge