Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2007-Jun

Carbohydrate reserves as a competing sink: evidence from tapping rubber trees.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
U Silpi
A Lacointe
P Kasempsap
S Thanysawanyangkura
P Chantuma
E Gohet
N Musigamart
A Clément
T Améglio
P Thaler

Palavras-chave

Resumo

Carbohydrate reserve storage in trees is usually considered a passive function, essentially buffering temporary discrepancies between carbon availability and demand in the annual cycle. Recently, however, the concept has emerged that storage might be a process that competes with other active sinks for assimilate. We tested the validity of this concept in Hevea brasiliensis Müll. Arg. (rubber) trees, a species in which carbon availability can be manipulated by tapping, which induces latex regeneration, a high carbon-cost activity. The annual dynamics of carbohydrate reserves were followed during three situations of decreasing carbon availability: control (no tapping), tapped and tapped with Ethephon stimulation. In untapped control trees, starch and sucrose were the main carbohydrate compounds. Total nonstructural carbohydrates (TNC), particularly starch, were depleted following bud break and re-foliation, resulting in an acropetal gradient of decreasing starch concentration in the stem wood. During the vegetative season, TNC concentration increased. At the end of the vegetative season, there were almost no differences in TNC concentration along the trunk. In tapped trees, the vertical gradient of starch concentration was locally disturbed by the presence of the tapping cut. However, the main effect of tapping was a dramatic increase in TNC concentration, particularly starch, throughout the trunk and in the root. The difference in TNC concentration between tapped and untapped trees was highest when latex production was highest (October); the difference was noticeable even in areas of the trees that are unlikely to be directly involved in latex regeneration, and it was enhanced by Ethephon stimulation, which is known to increase latex metabolism and flow duration. Thus, contrary to what could be expected if reserves serve as a passive buffer, a decrease in carbohydrate availability resulted in a net increase in carbohydrate reserves at the trunk scale. Such behavior supports the view that trees tend to adjust the amount of carbohydrate reserves stored to the level of metabolic demand, at the possible expense of growth.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge