Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2009-Aug

Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
P Chantuma
A Lacointe
P Kasemsap
S Thanisawanyangkura
E Gohet
A Clément
A Guilliot
T Améglio
P Thaler

Palavras-chave

Resumo

When the current level of carbohydrates produced by photosynthesis is not enough to meet the C demand for maintenance, growth or metabolism, trees use stored carbohydrates. In rubber trees (Hevea brasiliensis Muell. Arg.), however, a previous study (Silpi U., A. Lacointe, P. Kasemsap, S. Thanisawanyangkura, P. Chantuma, E. Gohet, N. Musigamart, A. Clement, T. Améglio and P. Thaler. 2007. Carbohydrate reserves as a competing sink: evidence from tapping the rubber tree. Tree Physiol. 27:881-889) showed that the additional sink created by latex tapping results not in a decrease, but in an increase in the non-structural carbohydrate (NSC) storage in trunk wood. In this study, the response of NSC storage to latex tapping was further investigated to better understand the trade-off between latex regeneration, biomass and storage. Three tapping systems were compared to the untapped Control for 2 years. Soluble sugars and starch were analyzed in bark and wood on both sides of the trunk, from 50 to 200 cm from the ground. The results confirmed over the 2 years that tapped trees stored more NSC, mainly starch, than untapped Control. Moreover, a double cut alternative tapping system, which produced a higher latex yield than conventional systems, led to even higher NSC concentrations. In all tapped trees, the increase in storage occurred together with a reduction in trunk radial growth. This was interpreted as a shift in carbon allocation toward the creation of reserves, at the expense of growth, to cover the increased risk induced by tapping (repeated wounding and loss of C in latex). Starch was lower in bark than in wood, whereas it was the contrary for soluble sugars. The resulting NSC was twice as low and less variable in bark than in wood. Although latex regeneration occurs in the bark, changes related to latex tapping were more marked in wood than in bark. From seasonal dynamics and differences between the two sides of the trunk in response to tapping, we concluded that starch in wood behaved as the long-term reserve compartment at the whole trunk level, whereas starch in bark was a local buffer. Soluble sugars behaved like an intermediate, ready-to-use compartment in both wood and bark. Finally, the dynamics of carbohydrate reserves appears a relevant parameter to assess the long-term performance of latex tapping systems.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge