Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virus Research 1994-Mar

Change in phenotype of tick-borne encephalitis virus following passage in Ixodes ricinus ticks and associated amino acid substitution in the envelope protein.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
M Labuda
W R Jiang
M Kaluzova
O Kozuch
P A Nuttall
P Weismann
E Elĕckova
E Zuffová
E A Gould

Palavras-chave

Resumo

Serial passage of an uncloned tick-borne encephalitis virus (strain 4387 isolated from the liver and lungs of a bank vole) in Ixodes ricinus ticks, was accompanied by gradual reduction in virulence of the virus, as indicated by transmission of virus by infected ticks feeding on laboratory mice. After the 7th serial passage in ticks (strain 4387/7), 95% of mice survived the bite of infected ticks. The surviving infected mice showed either no or only low viraemia although virus could be isolated from the brains of some mice 14 and 30 days after commencement of tick feeding, implying that the tick passaged virus might have established a persistent infection in the mice. Tests for haemagglutinating capacity were positive with TBE strain 4387 but strain 4387/7 exhibited no haemagglutinating activity over a wide pH range, suggesting that phenotypic changes, resulting from selection, had affected the site on the viral envelope protein that binds red blood cell receptors. Sequencing of the envelope protein gene of the virulent TBE strain 4387 showed 3 amino acid codon differences from western European TBE virus strain Neudorfl, which is also virulent for mice. The attenuated virus 4387/7, had an amino acid substitution that was different from 4387 and Neudorfl TBE virus (amino acid 84, E to K) and a second substitution different from 4387 but identical to Neudorfl virus (amino acid 319, I to T). Thus, the phenotypic change from virulence to attenuation was associated with a single amino acid codon change in the viral envelope gene of TBE virus. It is recognised, however, that amino acid substitutions in other parts of the viral genome have not been ruled out.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge