Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Infection and Immunity 2001-Sep

Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
J N Weiser
D Bae
H Epino
S B Gordon
M Kapoor
L A Zenewicz
M Shchepetov

Palavras-chave

Resumo

Most isolates of Streptococcus pneumoniae are mixed populations of transparent (T) and opaque (O) colony phenotypes. Differences in the production of capsular polysaccharide (CPS) between O and T variants were accentuated by changes in the environmental concentration of oxygen. O variants demonstrated a 5.2- to 10.6-fold increase in amounts of CPS under anaerobic compared to atmospheric growth conditions, while CPS production remained low under all conditions for T variants. Increased amounts of CPS in O compared to T pneumococci were associated with increased expression of cps-encoded proteins. The inhibitory effect of oxygen on expression of CPS in O variants correlated with decreased tyrosine phosphorylation of CpsD, a tyrosine kinase and regulator of CPS synthesis. Modulation of CpsD expression and its activity by tyrosine phosphorylation may allow the pneumococcus to adapt to the requirements of both colonization, where decreased CPS allows for adherence, and bacteremia, where increased CPS may be required to escape from opsonic clearance. In patients with invasive infection, paired isolates from the same patient were shown to have predominantly a T colony phenotype without phosphotyrosine on CpsD when cultured from the nasopharynx, and an O phenotype that phosphorylates CpsD in response to oxygen when cultured from the blood. Differences in the availability of oxygen, therefore, may be a key factor in allowing for the selection of distinct phenotypes in these two host environments.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge