Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2015-Jan

Comparative study on the impact of copper sulphate and copper nitrate on the detoxification mechanisms in Typha latifolia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Lyudmila Lyubenova
Hanif Bipuah
Ebenezer Belford
Bernhard Michalke
Barbro Winkler
Peter Schröder

Palavras-chave

Resumo

The present study focused on cupric sulphate and cupric nitrate uptake in Typha latifolia and the impact of these copper species on the plant's detoxification capacity. When the plants were exposed to 10, 50 and 100 μM cupric sulphate or cupric nitrate, copper accumulation in T. latifolia roots and shoots increased with rising concentration of the salts. Shoot to root ratios differed significantly depending on the form of copper supplementation, e.g. if it was added as cupric (II) sulphate or cupric (II) nitrate. After incubation with 100 μM of cupric sulphate, up to 450 mg Cu/kg fresh weight (FW) was accumulated, whereas the same concentration of cupric nitrate resulted in accumulation of 580 mg/kg FW. Furthermore, significant differences in the activity of some antioxidative enzymes in Typha roots compared to the shoots, which are essential in the plant's reaction to cope with metal stress, were observed. The activity of peroxidase (POX) in roots was increased at intermediate concentrations (10 and 50 μM) of CuSO4, whereas it was inhibited at the same Cu(NO3)2 concentrations. Ascorbate peroxidase (APOX) and dehydroascorbate reductase (DHAR) increased their enzyme activity intensely, which may be an indication for copper toxicity in T. latifolia plants. Besides, fluorodifen conjugation by glutathione S-transferases (GSTs) was increased up to sixfold, especially in roots.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge