Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of pharmacobio-dynamics 1986-Apr

Developmentally delayed sensitivity of acetylcholine receptor in myotubes of nerve-muscle cocultures from genetically diabetic mouse embryos.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
M Fujihara
I Kimura
T Nakamura
M Kimura

Palavras-chave

Resumo

The neuromuscular junctions of genetically diabetic KK-CAy mice are reported to be hypersensitive to succinylcholine (SuCh) but not to d-tubocurarine (d-TC). Spinal cord-muscle cocultures from normal ddY and diabetic KK-CAy mouse embryos were studied to examine the involvement of genetic factors in this hypersensitivity to SuCh. KK-CAy myotubes were morphologically normal, as determined by light microscopy. KK-CAy myotubes showed a progressive increase in the resting membrane potentials and acetylcholine (ACh) sensitivity with development, but this development was delayed when compared with ddY myotubes. The ACh receptor clusters, fluorescently labeled by fluorescein isothiocyanate conjugated alpha-bungarotoxin (FITC-alpha BuTX), were formed on the surface membrane of KK-CAy myotubes. The developmental increase of the total amount of fluorescence within ACh receptor clusters on KK-CAy myotubes was also slower than that of ddY myotubes. Depolarization by SuCh was sustained at a higher level in KK-CAy myotubes. In regards to the inhibition of ACh potentials, KK-CAy myotubes were not hypersensitive to both SuCh and d-TC when compared with ddY myotubes. These results suggest that the hypersensitivity to SuCh is not dependent on the genetic difference between ddY and KK-CAy mice, and is probably due to the developmentally diabetic state of the neuromuscular junction.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge