Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Crohn's & colitis 2016-Jun

Dysregulated Lysine Acetyltransferase 2B Promotes Inflammatory Bowel Disease Pathogenesis Through Transcriptional Repression of Interleukin-10.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Alfa H C Bai
William K K Wu
Liangliang Xu
Sunny H Wong
Minnie Y Go
Anthony W H Chan
Marcus Harbord
Shenghong Zhang
Minhu Chen
Justin C Y Wu

Palavras-chave

Resumo

OBJECTIVE

Accumulating evidence supports epigenetic modifications in mediating intestinal immunity in inflammatory bowel disease [IBD] pathogenesis. This study aimed to identify key dysregulated epigenetic modulators and the molecular downstream pathways in IBD.

METHODS

Expression of 116 well-defined epigenetic modulators was profiled and validated in 96 intestinal tissues from patients with Crohn's disease [CD], ulcerative colitis [UC], and healthy controls using quantitative reverse transcriptase polymerase chain reaction [QRT-PCR], western blot, and immunohistochemistry. Dysregulation of histone modifications and IBD-related cytokines were examined by chromatin immunoprecipitation, luciferase activity, and gene expression analyses in normal colonic epithelial cell line, NCM460, upon small-molecule inhibition or RNA interference, followed by validation in primary colonic tissues.

RESULTS

Targeted expression profiling uncovered seven differentially expressed epigenetic modulators, of which the down-regulation of lysine acetyltransferase 2B [KAT2B] mRNA and protein was the most significant and was consequently validated in inflamed CD and UC compared with healthy colonic tissues. KAT2B protein localised abundantly in nuclei of normal colonic epithelium but diminished in paired inflamed CD and UC tissues. Pharmacological inhibition of KAT2B by anacardic acid in NCM460 cells reduced the levels of histone H4 lysine 5 acetylation [H4K5ac] and interleukin-10 [IL-10] in a dose-dependent manner. Knockdown of KAT2B reduced the IL-10 promoter occupancy of KAT2B and H4K5ac, resulting in transcriptional silencing. IL-10 level was also diminished in inflamed IBD tissues.

CONCLUSIONS

Our findings demonstrated a novel epigenetic mechanism of IL-10 dysregulation in IBD. Down-regulation of KAT2B may disrupt the innate and adaptive inflammatory responses due to the suppression of this crucial anti-inflammatory cytokine.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge