Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2016-Dec

Ecophysiological responses of Betula pendula, Pinus uncinata and Rhododendron ferrugineum in the Catalan Pyrenees to low summer rainfall.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jordi Fernàndez-Martínez
M Alba Fransi
Isabel Fleck

Palavras-chave

Resumo

Climate change is producing modifications in the intensity and frequency of rainfall in some regions of the planet. According to predictions, annual rainfall distribution in Western Europe will result in an increase in episodes of drought, thereby negatively affecting nutrient availability. Since high mountain systems will be particularly vulnerable, the physiological and nutritional responses to changes in summer rainfall were monitored over the course of two consecutive summers on three species, which are representative of subalpine forests: birch (Betula pendula Roth.), rhododendron (Rhododendron ferrugineum L.) and mountain pine (Pinus uncinata Mill.). Birch was especially susceptible to scarce precipitation showing alterations in leaf morphology and a decline in net photosynthesis (A) due to stomatal closure, which led to photoinhibition and to early leaf senescence as shown by the photosynthetic nitrogen-use efficiency (PNUE), carbon/nitrogen (C/N) ratio, foliar N and 13C isotope discrimination (Δ13C) results. The Δ13C of the soluble fraction is a good estimator of intrinsic water-use efficiency in this species. Rhododendron and mountain pine had sclerophyllous leaves, as indicated by leaf mass per area, Δ13C, PNUE and C/N results. Rhododendron was particularly affected by short periods of scarce rainfall, which negatively affected gas exchange and photochemistry, and reduced the remobilization of leaf N and P. Mountain pine was the most tolerant species since alterations of gas exchange, photochemistry and Δ13C were not observed. Its highest investment of N in RuBisCo and highest potassium, iron and magnesium leaf concentration contributed to the highest A rates observed.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge