Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Medical Journal 2018-Aug

Effect of Neuronal Excitability in Hippocampal CA1 Area on Auditory Pathway in a Rat Model of Tinnitus.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yu-Jing Ding
Yu Song
Jun-Xiu Liu
Ya-Li Du
Li Zhu
Fu-Rong Ma

Palavras-chave

Resumo

UNASSIGNED

Tinnitus is a common disorder that causes significant morbidity; however, the neurophysiological mechanism is not yet fully understood. A relationship between tinnitus and limbic system has been reported. As a significant component of the limbic system, the hippocampus plays an important role in various pathological processes, such as emotional disturbance, decreased learning ability, and deterioration of memory. This study was aimed to explore the role of the hippocampus in the generation of tinnitus by electrophysiological technology.

UNASSIGNED

A tinnitus model was established in rats through intraperitoneal injection of salicylate (SA). Subsequently, the spontaneous firing rate (SFR) of neurons in the hippocampal CA1 area was recorded with in vivo multichannel recording technology to assess changes in excitability induced by SA. To investigate the effect of excitability changes of hippocampus on the auditory pathway, the hippocampus was electrically stimulated and neural excitability in the auditory cortex (AC) was monitored.

UNASSIGNED

Totally 65 neurons in the hippocampal CA1 area were recorded, 45 from the SA group (n = 5), and 20 from the saline group (n = 5). Two hours after treatment, mean SFR of neurons in the hippocampal CA1 area had significantly increased from 3.06 ± 0.36 Hz to 9.18 ± 1.30 Hz in the SA group (t = -4.521, P < 0.05), while no significant difference was observed in the saline group (2.66 ± 0.36 Hz vs. 2.16 ± 0.36 Hz, t = 0.902, P > 0.05). In the AC, 79.3% (157/198) of recorded neurons showed responses to electrical stimulation of the hippocampal CA1 area. Presumed pyramidal neurons were excited, while intermediate neurons were inhibited after electrical stimulation of the hippocampus.

UNASSIGNED

The study shows that the hippocampus is excited in SA-induced tinnitus, and stimulation of hippocampus could modulate neuronal excitability of the AC. The hippocampus is involved in tinnitus and may also have a regulatory effect on the neural center.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge