Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Economic Entomology 2015-Dec

Effect of Piperonyl Butoxide on the Toxicity of Four Classes of Insecticides to Navel Orangeworm (Amyelois transitella) (Lepidoptera: Pyralidae).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Mark Demkovich
Catherine E Dana
Joel P Siegel
May R Berenbaum

Palavras-chave

Resumo

Amyelois transitella (Walker) (Lepidoptera: Pyralidae), the navel orangeworm, is a highly polyphagous economic pest of almond, pistachio, and walnut crops in California. Increasing demand for these crops and their rising economic value has resulted in substantial increases of insecticide applications to reduce damage to acceptable levels. The effects of piperonyl butoxide (PBO), a methylenedioxyphenyl compound that can act as a synergist by inhibiting cytochrome P450-mediated detoxification on insecticide metabolism by A. transitella, were examined in a series of feeding bioassays with first-instar A. transitella larvae from a laboratory strain. PBO, however, can have a variety of effects on metabolism, including inhibition of glutathione-S-transferases and esterases and induction of P450s. In our study, PBO synergized the toxicity of acetamiprid, λ-cyhalothrin, and spinosad, suggesting possible involvement of P450s in their detoxification. In contrast, PBO interacted antagonistically with the organophosphate insecticide chlorpyrifos, reducing its toxicity, an effect consistent with inhibition of P450-mediated bioactivation of this pesticide. The toxicity of the anthranilic diamide insecticide chlorantraniliprole was not altered by PBO, suggestive of little or no involvement of P450-mediated metabolism in its detoxification. Because a population of navel orangeworm in Kern County, CA, has already acquired resistance to the pyrethroid insecticide bifenthrin through enhanced P450 activity, determining the effect of adding a synergist such as PBO on detoxification of all insecticide classes registered for use in navel orangeworm management can help to develop rotation practices that may delay resistance acquisition or to implement alternative management practices where resistance is likely to evolve.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge