Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2018-Oct

Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Li Zhou
Mu-Lu Zhan
Yi Tang
Ming Xiao
Ming Li
Qing-Shu Li
Lian Yang
Xian Li
Wen-Wen Chen
Ya-Lan Wang

Palavras-chave

Resumo

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of the development of colorectal cancer (CRC). A previous study revealed that the levels of arginine-specific mono-ADP-ribosyltransferase 1 (ART1) in CRC tissues from patients with T2DM were higher than in non-diabetic patients. Hyperglycemia, which is a risk factor of cancer, is a common feature of T2DM; however, the effects of ART1 on glycolysis and energy metabolism in CRC cells under high-glucose conditions remains to be elucidated. β-caryophyllene (BCP) has been reported to exert anticancer and hypoglycemic effects. In the present study, CT26 cells were cultured under a high-glucose conditions and the expression levels of relevant factors were detected by western blotting. Cell Counting Kit-8 assay, flow cytometry, Hoechst 33258 staining, ATP assay and lactic acid assay were used to detect the proliferation, apoptosis and energy metabolism of CT26 cells. To observe the effects of ART1 and BCP on tumor growth in vivo, CT26 cell tumors were successfully transplanted into BALB/c mice with T2DM. The results demonstrated that overexpression of ART1 may increase glycolysis and energy metabolism in CT26 CRC cells under high glucose conditions by regulating the protein kinase B/mammalian target of rapamycin/c‑Myc signaling pathway and the expression of glycolytic enzymes. BCP inhibited the effects induced by ART1, which may be due to a BCP-induced reduction in the expression levels of ART1 via nuclear factor-κB. Therefore, ART1 may be considered a therapeutic target for the treatment of diabetic patients with CRC.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge