Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2019-Jan

Effects of ferric sulfate and polyaluminum chloride coagulation enhanced treatment wetlands on Typha growth, soil and water chemistry.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yan Ling Liang
Tamara E C Kraus
Lucas C R Silva
Philip A M Bachand
Sandra M Bachand
Timothy A Doane
William R Horwath

Palavras-chave

Resumo

Land surface subsidence is a concern in many deltas worldwide as it contributes to water quality degradation, loss of fertile land and increased potential for levee failure. As a possible solution to these concerns, on-site coagulation enhanced treatment wetlands (CETWs), coagulation water treatment followed by wetland passage serving as a settling basin, were implemented in a field-scale study located on a subsided island of the Sacramento-San Joaquin Delta in northern California under three treatments; coagulation with polyaluminum chloride (PAC), coagulation with ferric sulfate and an untreated control. Because CETWs offer a relatively novel solution for water quality improvement and subsidence reversal due to its low-infrastructure requirements and in-situ nature, effects from these systems remain uncharted and they may have adverse effects on plant biomass production that also contribute to sediment accretion. This study focuses on the effect CETWs had on the growth of Typha spp.; the dominant vegetation in the wetlands. Plant growth parameters and nutrient content were measured in conjunction with soil, pore water and surface water chemistry. Soil analysis indicated there was no intermixing of newly formed flocs and original soil material. Where there was significant deposition of floc, PAC treatment reduced phosphate concentrations and ferric sulfate treatment increased total Fe concentrations in surrounding water compared to the control. Results indicated coagulation treatments had no negative effects on Typha leaf nutrient content, Typha growth or allometric parameters. Additionally, no signs of plant toxicity such as necrosis, wilting or chlorosis were observed in any of the treatments. Overall, this study suggests that CETWs are viable treatment option for water quality improvement and sediment accretion while having no negative impact on the growth of Typha plants.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge