Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mycological research 2009-Jan

Effects of water potential and solute on the growth and interactions of two fungal symbionts of the mountain pine beetle.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
K P Bleiker
D L Six

Palavras-chave

Resumo

We investigated the effect of water potential (WP) on the growth of, and interaction between, two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma montium, associated with the mountain pine beetle (Dendroctonus ponderosae). The WP of malt extract agar was amended by adding potassium chloride (KCl) or sucrose. Growth of both fungi decreased with WP on KCl-amended media. Growth of G. clavigera also decreased with WP on sucrose-amended media, although growth was stimulated on these media compared to unamended treatments. Growth of O. montium remained relatively constant on sucrose-amended media, confounding the effect of WP on this species. Both fungi were able to colonize media occupied by the other species, but at a slower rate than on unoccupied media, indicating competition. In most treatments, G. clavigera grew faster than O. montium and colonized a greater area when the two fungi were inoculated concurrently but distant to one another on a Petri dish. However, when each fungus was inoculated adjacent to a 10-d-old well-established colony of the other species, O. montium colonized occupied media more effectively than G. clavigera considering the growth rate of each species alone. Thus, G. clavigera dominated primary (uncolonized) resources on most media, whereas O. montium was more effective in colonizing secondary (occupied) resources. The differential response of the two fungi to sucrose indicates that they may use different carbon sources, or use different carbon sources at different rates, in the tree. Fine-scale resource partitioning, differences in primary and secondary resource capture abilities, and the non-equilibrium dynamics in an attacked tree over time, could all act to promote the co-existence of two unit-restricted dispersers on a discontinuous resource.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge