Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2012-Feb

Energetics of lipid binding in a hydrophobic protein cavity.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Lan Liu
Klaus Michelsen
Elena N Kitova
Paul D Schnier
John S Klassen

Palavras-chave

Resumo

Hydrophobic bonding is central to many biochemical processes, such as protein folding and association. However, a complete description of the forces underlying hydrophobic interactions is lacking. The goal of this study was to evaluate the intrinsic energetic contributions of -CH(3), >CH(2), and -HC═CH- groups to protein-lipid binding. To this end, Arrhenius parameters were measured for dissociation of gaseous deprotonated ions (at the -7 charge state) of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and a series of saturated, unsaturated, and branched fatty acids (FA). In the gas phase, the (Lg + FA)(7-) ions adopt one of two noninterconverting structures, which we refer to as the fast and slow dissociating components. The dissociation activation energies measured for the fast components of the (Lg + FA)(7-) ions were found to correlate linearly with the association free energies measured in aqueous solution, suggesting that the specific protein-lipid interactions are preserved in the gas phase. The average contributions that the -CH(3), >CH(2), and -HC═CH- groups make to the dissociation activation energies measured for the fast components of the (Lg + FA)(7-) ions were compared with enthalpies for the transfer of hydrocarbons from the gas phase to organic solvents. For >CH(2) groups, the interior of the cavity was found to most closely resemble the relatively polar solvents acetone and N,N-dimethylformamide, which have dielectric constants (ε) of 21 and 39, respectively. For -CH(3) groups, the solvent environment most closely resembles 1-butanol (ε = 17), although the energetic contribution is dependent on the location of the methyl group in the FA. In contrast, the solvation of -HC═CH- groups is similar to that afforded by the nonpolar solvent cyclohexane (ε = 2).

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge