Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Lung Cellular and Molecular Physiology 2007-Jun

Enhanced airway reactivity and inflammation in A2A adenosine receptor-deficient allergic mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Ahmed Nadeem
Ming Fan
Habib R Ansari
Catherine Ledent
S Jamal Mustafa

Palavras-chave

Resumo

A(2A) adenosine receptor (A(2A)AR) has potent anti-inflammatory properties, which may be important in the regulation of airway reactivity and inflammation. Inflammatory cells that possess A(2A)AR also produce nitrosative stress, which is associated with pathophysiology of asthma, so we hypothesized that A(2A)AR deficiency may lead to increased airway reactivity and inflammation through nitrosative stress. Thus the present study was carried out to investigate the role of A(2A)AR on airway reactivity, inflammation, NF-kappaB signaling, and nitrosative stress in A(2A)AR knockout (KO) and wild-type (WT) mice using our murine model of asthma. Animals were sensitized intraperitoneally on days 1 and 6 with 200 microg of ragweed, followed by aerosolized challenges with 0.5% ragweed on days 11, 12, and 13, twice a day. On day 14, airway reactivity to methacholine was assessed as enhanced pause (Penh) using whole body plethysmography followed by bronchoalveolar lavage (BAL) and lung collection for various analyses. Allergen challenge caused a significant decrease in expression of A(2A)AR in A(2A) WT sensitized mice, with A(2A)AR expression being undetected in A(2A) KO sensitized group leading to decreased lung cAMP levels in both groups. A(2A)AR deletion/downregulation led to an increase in Penh to methacholine and influx of total cells, eosinophils, lymphocytes, and neutrophils in BAL with highest values in A(2A) KO sensitized group. A(2A) KO sensitized group further had increased NF-kappaB expression and nitrosative stress compared with WT sensitized group. These data suggest that A(2A)AR deficiency leads to airway inflammation and airway hyperresponsiveness, possibly via involvement of nitrosative stress in this model of asthma.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge