Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2019-Sep

Enhanced antimycotic activity of nanoconjugates from fungal chitosan and Saussurea costus extract against resistant pathogenic Candida strains.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Fawzia Alshubaily

Palavras-chave

Resumo

Targeting the control of pathogenic Candida spp., especially the fungicides resistant strains from C. albicans and C. glabrata, nanoconjugates from the biopolymer (chitosan) and costus root extract (Saussurea costus) was synthesized and characterized. Chitosan was extracted from the grown mycelia of Aspergillus niger and characterized with high deacetylation degree of 91.2% and moderate molecular weight of 106.8 kDa. Synthesis of nanoconjugates from fungal chitosan/costus extract (NCt/CE) was conducted using ionic gelation technique; the resulted NCt/CE particles were characterized with mean diameter of 48 nm, positive zeta potentiality (+3.28 mV) and high stability. The infra-red spectra of synthesized nanoconjugates indicated their strong biochemical cross-linkage. The antimycotic activities, of the synthesized NCt, CE and their nanocomposite, were evaluated against standard and antibiotic-resistant strains from C. albicans and C. glabrata and revealed that the entire agents had notable antimycotic potentiality against all examined strains; the NCt/CE nanoconjugates had significantly stronger antimicrobial action. The scanning microscope imaging, of exposed resistant strains to NCt/CE, indicated their vigorous structural and morphological alterations and confirmed the antimycotic activity of the nanocomposite. NCt/CE nanoconjugates' synthesis could be exceedingly recommended as a natural, biodegradable and effectual antimycotic agent to control resistant pathogenic yeast strains.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge