Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research Bulletin 2019-Dec

Enhanced functional recovery by levodopa is associated with decreased levels of synaptogyrin following stroke in aged mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jens Henrikson
Ana Antunes
Tadeusz Wieloch
Karsten Ruscher

Palavras-chave

Resumo

Levodopa is a precursor to dopamine that has been shown to improve functional recovery following stroke partly achieved through mechanisms of brain plasticity. This study investigates if dopamine might affect plasticity by having a direct effect on synaptic plasticity through alterations in neurotransmitter release and re-uptake. Synaptogyrin is a synaptic vesicle protein that has been suggested to be involved in dopamine re-uptake in the synaptic terminal. Therefore, we investigated if levodopa has an effect on the expression of synaptogyrin 1. Thy1-YFP mice were subjected to photothrombosis as an experimental model of stroke. Starting two days after surgery they were treated with either levodopa or a vehicle solution (saline) on a daily basis until day seven following surgery. On day seven they were sacrificed and their brains stained for Dopamine 1 receptor (D1R), Dopamine 2 receptor (D2R) and Parvalbumin (PV). Neu-N stainings were used to estimate infarct size. A second group of mice were subjected to photothrombosis and also treated with either levodopa or a vehicle solution in the same manner as previously mentioned. On day seven they were then sacrificed, and samples of brain tissue were taken for protein determination. Western blots were carried out to investigate possible differences in synaptogyrin expression between the two groups. Immunofluorescent stains showed the presence of dopamine receptors on the YFP-positive neurons and on PV-expressing neurones. Our Western Blot analysis showed a significant decrease in the expression of synaptogyrin in levodopa-treated mice. Our stains showed co-localisation with Thy-1 neurones and PV-expressing neurones for both D1 and D2 receptors. This indicates that dopamine has the ability to bind to, and directly influence cortical neurons, as well as inhibitory interneurons. We discovered a considerable decrease in synaptogyrin expression through levodopa treatment, suggesting that this might be a mechanism for regulating brain plasticity.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge