Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microvascular Research 2018-Nov

Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Arun K Sharma
Ashish Kumar
Megha Sahu
Gunjan Sharma
Ashok K Datusalia
Satyendra K Rajput

Palavras-chave

Resumo

BACKGROUND

Drinking water from copper vessels and aerobic exercise have been the known facts for cardioprotection. Our previous report explored the significant cardioprotective potential of copper and exercise training by increasing phosphorylation of GSK-3β and anti-oxidant potential.

OBJECTIVE

Present study focuses the therapeutic potential of CuNP and exercise training through their molecular interaction with GSK-3β, inflammatory cytokinin, oxidative stress and necrosis.

METHODS

The Myocardial damage was assessed by estimating the serum nitrite/nitrate concentration, increased CKMB, LDH, cTnI level, oxidative stress, inflammatory cytokinin and structural abnormalities in I/R insulted rats. Expression of Akt/pAkt and GSK-3β/pGSK-3β was measured by western blotting.

RESULTS

Treatment with CuNP (1 mg/kg/day, p.o., 4 weeks) and exercise training (swimming, 90 min/4 weeks) either alone or in combination markedly reduced I/R induced myocardial damage by attenuating biochemical and structural alteration. A significant reduction in oxidative stress and inflammatory mediators were observed in CuNP and exercise training treatment against I/R insulted rats. Moreover, improved serum NO bioavailability was observed in CuNP and exercise treated rats. Wortmannin associated blockage of cardioprotection induced by CuNP and exercise training and up-regulation of pAkt and pGSK-3β in I/R insulted heart confirmed the GSK-3β phosphorylation potential of CuNP and exercise training and -associated cardioprotection.

CONCLUSIONS

Treatment with CuNP and exercise training either alone or in combination favourably phosphorylate GSK-3β kinase pathways and further diminish oxidative stress, inflammatory cytokines, apoptosis and increase serum bioavailability of NO in the I/R insulted rats which tends to protect myocardial damage.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge