Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computational Biology and Chemistry 2016-06

Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB-A molecular docking and dynamics approach.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Vanajothi Ramar
Srinivasan Pappu

Palavras-chave

Resumo

Nuclear factor kappa B (NF-κB) is a transcription factor, plays a crucial role in the regulation of various physiological processes such as differentiation, cell proliferation and apoptosis. It also coordinates the expression of various soluble proinflammatory mediators like cytokines and chemokines. The 1, 8-dihydroxy-4-methylanthracene-9, 10-dione (DHMA) was isolated from Luffa acutangala and its in vitro cytotoxic activity against NCI-H460 cells was reported earlier. It also effectively induces apoptosis through suppressing the expression NF-κB protein. Based on experimental evidence, the binding affinity of compound 1 with NF-κB p50 (monomer) and NF-κB-DNA was investigated using molecular docking and its stability was confirmed through molecular dynamic simulation. The reactivity of the compound was evaluated using density functional theory (DFT) calculation. From the docking results, we noticed that the hydroxyl group of DHMA forms hydrogen bond interactions with polar and negatively charged amino acid Tyr57 and Asp239 and the protein-ligand complex was stabilized through pi-pi stacking with the help of polar amino acid His114, which plays a key role in binding of NF-κB to DNA at a site of DNA-binding region (DBR). The result indicates that the isolated bioactive compound DHMA might have altered the binding affinity between DNA and NF-κB. These findings suggest that potential use of DHMA in cancer chemoprevention and therapeutics.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge