Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1998-Apr

Expression of a plastidic ATP/ADP transporter gene in Escherichia coli leads to a functional adenine nucleotide transport system in the bacterial cytoplasmic membrane.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
J Tjaden
C Schwöppe
T Möhlmann
P W Quick
H E Neuhaus

Palavras-chave

Resumo

Recently, a second type of eucaryotic adenine nucleotide transporter located in the inner envelope membrane of higher plants has been identified at the molecular level (Neuhaus, H. E., Thom, E., Möhlmann, T., Steup, M., and Kampfenkel, K. (1997) Plant J. 11, 73-82). Here we have analyzed the biochemical properties of this ATP/ADP transporter from Arabidopsis thaliana (AATP1, At). This analysis was carried out by expressing a cDNA encoding this carrier as a histidine-tagged chimeric protein heterologously in Escherichia coli. Isopropyl-1-thio-beta-D-galactopyranoside (IPTG)-induced E. coli cells were able to import radioactively labeled [alpha-32P]ATP. Uninduced E. coli cells did not import [alpha-32P]ATP. Further control experiments revealed that IPTG induction did not promote import of other phosphorylated or unphosphorylated metabolites into the bacterial cell indicating the specificity of [alpha-32P]ATP transport. [alpha-32P]ATP uptake into induced E. coli cells was linear with time for several minutes allowing for determination of kinetic constants. The apparent Km for ATP was 17 microM which is close to values reported on the authentic protein in isolated plastids. ADP was a strong competitive inhibitor of -alpha-32P-ATP uptake (Ki ADP 3.6 microM). Other metabolites like AMP, ADP glucose, UTP, UDP, NAD, and NADP did not influence [alpha-32P]ATP uptake. IPTG-induced E. coli cells preloaded with [alpha-32P]ATP exported radioactively labeled adenylates after exogenous addition of unlabeled ATP or ADP indicating a counter exchange mechanism of transport. The biochemical properties of the heterologously expressed AATP1 gene product demonstrated that the protein is functionally integrated in the cytoplasmic membrane of E. coli. This is the first report of the functional expression of a plant membrane protein in E. coli leading to new transport properties across the cytoplasmic membrane. The functional integration of a plant membrane protein in the cytoplasmic membrane of E. coli offers new possibilities for future studies of the structural and mechanistic properties of this transporter. Since IPTG induction allowed synthesis of a 67-kDa protein in E. coli, which was subsequently specifically enriched by metal-chelate chromatography, this procaryotic heterologous expression system might provide a suitable system for overproduction of membrane proteins of eucaryotic origin in the near future.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge