Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 2009-Jul

[FTIR and XPS spectroscopic studies of photodegradation of Moso Bamboo (Phyllostachys pubescens Mazel)].

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Xiao-Qing Wang
Hai-Qing Ren
Rong-Jun Zhao
Qiang Cheng
Yong-Ping Chen

Palavras-chave

Resumo

The photodegradation process of bamboo involves very complex chemical reactions. In the present study, surface deterioration of Moso bamboo (Phyllostachys pubescens Mazel) was carried out by a xenon fade meter which can simulate sunlight irradiation, and Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopic (XPS) techniques were used to characterize the resulting changes in the chemical structure and composition of bamboo surface. XPS results showed that light irradiation resulted in significant increases in oxygen (O) content and O/C ratio. Besides, changes were also identified from the detailed C(ls) spectra, with a remarkable decrease in C1 component (C-C) and simultaneous increases in the components of C2 (C-O), C3 (C = O) and C4 (O-C = O), suggesting that the carbon atoms at bamboo surface were highly oxidized. FTIR results showed that lignin was susceptible to light irradiation and was significant degraded after treatment, as indicated by remarkable decreases in the intensity of lignin associated bands (e. g. 1 604, 1 512 and 1 462 cm(-1)). This was accompanied by the formation of new carbonyl compounds as shown by an obvious increase in the intensity of non-conjugated carbonyl group at 1 735 cm(-1), which further indicated the photo-oxidation of bamboo surface. The polysaccharides (cellulose and hemicellulose) components, however, were less influenced by light irradiation, and their relative content at bamboo surface increased significantly due to lignin degradation.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge