Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food research international (Ottawa, Ont.) 2017-Oct

Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Raj Kumar Salar
Sukhvinder Singh Purewal
Kawaljit Singh Sandhu

Palavras-chave

Resumo

In the present study, pearl millet cultivar PUSA-415 was fermented by solid state fermentation (SSF) process using Aspergillus sojae (MTCC-8779) as starter culture. The fermentation was carried out for the period of ten days. The effect of SSF on phenolic content, condensed tannin content, antioxidant potential and DNA damage protection of pearl millet during different fermentation period was determined. Results showed that SSF and thermal processing significantly affect the bioactive profile and antioxidant potential of bio-transformed pearl millet. Extracts prepared from 6th days fermented pearl millet flour exhibited the highest TPC, antioxidant potential and DNA damage protection activity. Qualitative and quantitative analysis of bioactive compounds were done by HPLC. During SSF, production of enzymes (α-amylase, β-glucosidase and xylanase) as well as specific bioactive compounds (ascorbic acid, gallic acid and p-Coumaric acid) was significantly increased. Thus, bio-transformed Aspergillus sojae fermented pearl millet could be used in preparation of functional foods and novel nutraceuticals in health promotions. Chapatti was formulated from unfermented as well as fermented flour and the effect of thermal processing on bioactive compounds and antioxidant potential was studied. Thermal processing resulted in decrease in TPC of both, AFM and UFM by 4.75-16.27% and increase in CTC by 38.52-67.41%.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge