Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Microbiology 2018

First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Tobias Bauer
Wolfgang Sipos
Timo D Stark
Tobias Käser
Christian Knecht
Rene Brunthaler
Armin Saalmüller
Thomas Hofmann
Monika Ehling-Schulz

Palavras-chave

Resumo

Bacillus cereus is a gram-positive pathogen mainly known to evoke two types of foodborne poisonings. The diarrheal syndrome is caused by enterotoxins produced during growth in the intestine. In contrast, the emetic type is caused by the dodecadepsipeptide cereulide pre-formed in food. Usually, both diseases are self-limiting but occasionally more severe forms, including fatal ones, are reported. Since the mechanisms of cereulide toxin uptake and translocation within the body as well as the mechanism of its toxic action are still unknown, we used a porcine model to investigate the uptake, routes of excretion and distribution of cereulide within the host. Pigs were orally challenged with cereulide using single doses of 10-150 μg cereulide kg-1 body weight to study acute effects or using daily doses of 10 μg cereulide kg-1 body weight administered for 7 days to investigate effects of longtime, chronic exposure. Our study showed that part of cereulide ingested with food is rapidly excreted with feces while part of the cereulide toxin is absorbed, passes through membranes and is distributed within the body. Results from the chronic trial indicate bioaccumulation of cereulide in certain tissues and organs, such as kidney, liver, muscles and fat tissues. Beside its detection in various tissues and organs, our study also demonstrated that cereulide is able to cross the blood-brain-barrier, which may partially explain the cerebral effects reported from human intoxication cases. The neurobehavioral symptoms, such as seizures and lethargy, observed in our porcine model resemble those reported from human food borne intoxications. The rapid onset of these symptoms indicates direct effects of cereulide on the central nervous system (CNS), which warrant further research. The porcine model presented here might be useful to study the specific neurobiological effect in detail. Furthermore, our study revealed that typical diagnostic specimens used in human medicine, such as blood samples and urine, are not suitable for diagnostics of food borne cereulide intoxications. Instead, screening of fecal samples by SIDA-LC-MS may represent a simple and non-invasive method for detection of cereulide intoxications in clinical settings as well as in foodborne outbreak situations.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge