Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2014-Jul

Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Gabriela Trevisan
Mateus F Rossato
Raquel Tonello
Carin Hoffmeister
Jonatas Z Klafke
Fernanda Rosa
Kelly V Pinheiro
Francielle V Pinheiro
Aline A Boligon
Margareth L Athayde

Palavras-chave

Resumo

The transient receptor potential ankyrin 1 (TRPA1) has been identified as a relevant target for the development of novel analgesics. Gallic acid (GA) is a polyphenolic compound commonly found in green tea and various berries and possesses a wide range of biological activities. The goal of this study was to identify GA as a TRPA1 antagonist and observe its antinociceptive effects in different pain models. First, we evaluated the ability of GA to affect cinnamaldehyde-induced calcium influx. Then, we observed the antinociceptive and antiedematogenic effects of GA (3-100 mg/kg) oral administration after the intraplantar (i.pl.) injection of TRPA1 agonists (allyl isothiocyanate, cinnamaldehyde, or hydrogen peroxide-H2O2) in either an inflammatory pain model (carrageenan i.pl. injection) or a neuropathic pain model (chronic constriction injury) in male Swiss mice (25-35 g). GA reduced the calcium influx mediated by TRPA1 activation. Moreover, the oral administration of GA decreased the spontaneous nociception triggered by allyl isothiocyanate, cinnamaldehyde, and H2O2. Carrageenan-induced allodynia and edema were largely reduced by the pretreatment with GA. Moreover, the administration of GA was also capable of decreasing cold and mechanical allodynia in a neuropathic pain model. Finally, GA was absorbed after oral administration and did not produce any detectable side effects. In conclusion, we found that GA is a TRPA1 antagonist with antinociceptive properties in relevant models of clinical pain without detectable side effects, which makes it a good candidate for the treatment of painful conditions.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge